
e04 – Minimizing or Maximizing a Function e04mfc

nag opt lp (e04mfc)

1. Purpose

nag opt lp solves general linear programming problems. It is not intended for large sparse problems.

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_lp(Integer n, Integer nclin, double a[], Integer tda, double bl[],
double bu[], double cvec[], double x[], double *objf,
Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)

3. Description

nag opt lp is designed to solve linear programming (LP) problems of the form

minimize cTx
x ∈ Rn

subject to l ≤
{

x
Ax

}
≤ u,

where c is an n element vector and A is an mlin by n matrix.

The routine allows the linear objective function to be omitted in which case a feasible point (FP)
for the set of constraints is sought.

The constraints involving A are called the general constraints. Note that upper and lower bounds
are specified for all the variables and for all the general constraints. An equality constraint can be
specified by setting li = ui. If certain bounds are not present, the associated elements of l or u can
be set to special values that will be treated as −∞ or +∞. (See the description of the optional
parameter inf bound in Section 8.2).
The user must supply an initial estimate of the solution.

Details about the algorithm are described in Section 7, but it is not necessary to read this more
advanced section before using nag opt lp.

4. Parameters

n
Input: n, the number of variables.
Constraint: n > 0.

nclin
Input: mlin, the number of general linear constraints.
Constraint: nclin ≥ 0.

a[nclin][tda]
Input: the ith row of a must contain the coefficients of the ith general linear constraint (the
ith row of A), for i = 1, 2, . . . ,mlin.
If nclin = 0 then the array a is not referenced.

tda
Input: the second dimension of the array a as declared in the function from which nag opt lp
is called.
Constraint: tda ≥ n if nclin > 0.

bl[n+nclin]
bu[n+nclin]

Input: bl must contain the lower bounds and bu the upper bounds, for all the constraints
in the following order. The first n elements of each array must contain the bounds on the

[NP3491/6] 3.e04mfc.1

nag opt lp NAG C Library Manual

variables, and the next mlin elements the bounds for the general linear constraints (if any).
To specify a non-existent lower bound (i.e., lj = −∞), set bl[j] ≤ −inf bound, and to specify
a non-existent upper bound (i.e., uj = +∞), set bu[j] ≥ inf bound; here inf bound is the
value of the optional parameter options.inf bound, whose default value is 1020 (see Section
8.2). To specify the jth constraint as an equality, set bl[j] = bu[j] = β, say, where |β| <
inf bound.
Constraint: bl[j] ≤ bu[j], for j = 0, 1, . . . ,n + nclin − 1.

cvec[n]
Input: the coefficients of the objective function when the problem is of type Nag LP. The
problem type is specified by the optional parameter prob (see Section 8) and the values
Nag LP and Nag FP represent linear programming problem and feasible point problem
respectively. Nag LP is the default problem type for nag opt lp.
If the problem type Nag FP is specified then cvec is not referenced and a NULL pointer may
be given.

x[n]
Input: an initial estimate of the solution.
Output: the point at which nag opt lp terminated. If fail.code = NE NOERROR,
NW SOLN NOT UNIQUE or NW NOT FEASIBLE, x contains an estimate of the solution.

objf
Output: the value of the objective function at x if x is feasible, or the sum of infeasibilities
at x otherwise. If the problem is of type Nag FP and x is feasible, objf is set to zero.

options
Input/Output: a pointer to a structure of type Nag E04 Opt whose members are optional
parameters for nag opt lp. These structure members offer the means of adjusting some of the
parameter values of the algorithm and on output will supply further details of the results.
A description of the members of options is given below in Section 8. Some of the results
returned in options can be used by nag opt lp to perform a ‘warm start’ if it is re-entered
(see the member start in Section 8.2).
If any of these optional parameters are required then the structure options should be
declared and initialised by a call to nag opt init (e04xxc) and supplied as an argument to
nag opt lp. However, if the optional parameters are not required the NAG defined null
pointer, E04 DEFAULT, can be used in the function call.

comm
Input/Output: structure containing pointers for user communication with an optional user
defined printing function. See Section 8.3.1 for details. If the user does not need to make use
of this communication feature then the null pointer NAGCOMM NULL may be used in the call to
nag opt lp.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialise fail and set fail.print = TRUE for this
function. nag opt lp returns with fail.code = NE NOERROR if x is a strong local minimizer,
i.e., the reduced gradient is negligible and the Lagrange multipliers are optimal.

4.1. Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be
controlled by the user with the structure member options.print level (see Section 8.2).The default
print level of Nag Soln Iter provides a single line of output at each iteration and the final result.
This section describes the default printout produced by nag opt lp.

The convention for numbering the constraints in the iteration results is that indices 1 to n refer
to the bounds on the variables, and indices n + 1 to n + mlin refer to the general constraints.
When the status of a constraint changes, the index of the constraint is printed, along with the
designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed variable) or A
(artificial constraint).

3.e04mfc.2 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

The single line of intermediate results output on completion of each iteration gives:

Itn the iteration count.

Jdel the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd the index of the constraint added to the working set. If Jadd is zero, no constraint
was added.

Step the step taken along the computed search direction. If a constraint is added during
the current iteration (i.e., Jadd is positive), Step will be the step to the nearest
constraint. When the problem is of type Nag LP the step can be greater than 1.0
during the optimality phase,

Ninf the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Obj the value of the current objective function. If x is not feasible, Sinf gives a weighted
sum of the magnitudes of constraint violations. If x is feasible, Obj is the value
of the objective function. The output line for the final iteration of the feasibility
phase (i.e., the first iteration for which Ninf is zero) will give the value of the true
objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities
will not increase until either a feasible point is found, or the optimality of the
multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Bnd the number of simple bound constraints in the current working set.

Lin the number of general linear constraints in the current working set.

Nart the number of artificial constraints in the working set.

Nrz the dimension of the subspace in which the objective function is currently being
minimized. The value of Nrz is the number of variables minus the number of
constraints in the working set; i.e., Nrz = n− (Bnd+ Lin+ Nart).

Norm Gz the Euclidean norm of the reduced gradient. During the optimality phase, this
norm will be approximately zero after a unit step.

The printout of the final result consists of:

Varbl the name (V) and index j, for j = 1, 2, . . . , n of the variable.

State the state of the variable (FR if neither bound is in the working set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily fixed
at its current value). If Value lies outside the upper or lower bounds by more than
the feasibility tolerance, State will be ++ or -- respectively.

Value the value of the variable at the final iteration.

Lower bound the lower bound specified for the variable.
(None indicates that bl[j − 1] ≤ -inf bound.)

Upper bound the upper bound specified for the variable.
(None indicates that bu[j − 1] ≥ inf bound.)

[NP3491/6] 3.e04mfc.3

nag opt lp NAG C Library Manual

Lagr mult the value of the Lagrange multiplier for the associated bound constraint. This will
be zero if State is FR. If x is optimal, the multiplier should be non-negative if
State is LL, and non-positive if State is UL.

Residual the difference between the variable Value and the nearer of its bounds bl[j − 1]
and bu[j − 1].

The meaning of the printout for general constraints is the same as that given above for variables,
with ‘variable’ replaced by ‘constraint’, and with the following change in the heading:

LCon the name (L) and index j, for j = 1, 2, . . . ,mlin of the constraint.

5. Comments

A list of possible error exits and warnings from nag opt lp is given in Section 9. Scaling and
accuracy are considered in Section 10.

6. Example 1

This example minimizes the function

−0.02x1 − 0.2x2 − 0.2x3 − 0.2x4 − 0.2x5 + 0.04x6 + 0.04x7

subject to the bounds

−0.01 ≤ x1 ≤ 0.01
−0.10 ≤ x2 ≤ 0.15
−0.01 ≤ x3 ≤ 0.03
−0.04 ≤ x4 ≤ 0.02
−0.10 ≤ x5 ≤ 0.05
−0.01 ≤ x6

−0.01 ≤ x7

and the general constraints

x1 + x2 + x3 + x4 + x5 + x6 + x7 = −0.13
0.15x1 + 0.04x2 + 0.02x3 + 0.04x4 + 0.02x5 + 0.01x6 + 0.03x7 ≤ −0.0049
0.03x1 + 0.05x2 + 0.08x3 + 0.02x4 + 0.06x5 + 0.01x6 ≤ −0.0064
0.02x1 + 0.04x2 + 0.01x3 + 0.02x4 + 0.02x5 ≤ −0.0037
0.02x1 + 0.03x2 + 0.01x5 ≤ −0.0012

−0.0992 ≤ 0.70x1 + 0.75x2 + 0.80x3 + 0.75x4 + 0.80x5 + 0.97x6

−0.003 ≤ 0.02x1 + 0.06x2 + 0.08x3 + 0.12x4 + 0.02x5 + 0.01x6 + 0.97x7 ≤ 0.002

The initial point, which is infeasible, is

x0 = (−0.01, −0.03, 0.0, −0.01, −0.1, 0.02, 0.01)T .

The computed solution (to five figures) is

x∗ = (−0.01, −0.1, 0.03, 0.02, −0.067485, −0.0022801, −0.00023453)T .

Four bound constraints and three general constraints are active at the solution.

This first example shows the simple use of nag opt lp where default values are used for all optional
parameters. A second example showing the use of optional parameters is given in Section 13. There
is one example program file, the main program of which calls both examples. The main program
and example 1 are given below.

3.e04mfc.4 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

6.1. Program Text

/* nag_opt_lp (e04mfc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
* Mark 6 revised, 2000.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <nage04.h>

static void ex1(void);
static void ex2(void);

#define MAXN 10
#define MAXLIN 7
#define MAXBND MAXN+MAXLIN

main(void)
{

/* Two examples are called, ex1() uses the
* default settings to solve a problem while
* ex2() solves another problem with some
* of the optional parameters set by the user.
*/

Vprintf("e04mfc Example Program Results.\n");
ex1();
ex2();
exit(EXIT_SUCCESS);

}

static void ex1()
{

double x[MAXN], cvec[MAXN];
double a[MAXLIN][MAXN];
double bl[MAXBND], bu[MAXBND];
double objf;
Integer i, j, n, nbnd, tda, nclin;
static NagError fail;

Vprintf("\nExample 1: default options used.\n");
Vscanf(" %*[^\n]"); /* Skip headings in data file */
Vscanf(" %*[^\n]");

fail.print = TRUE;

/* Set the actual problem dimensions.
* n = the number of variables.
* nclin = the number of general linear constraints (may be 0).
* nbnd = the number of variables + linear constraints
*/
tda = MAXN;
n = 7;
nclin = 7;
nbnd = n + nclin;

/* cvec = the objective function coefficients.
* a = the linear constraint matrix.
* bl = the lower bounds on x and A*x.
* bu = the upper bounds on x and A*x.
* x = the initial estimate of the solution.
*/

[NP3491/6] 3.e04mfc.5

nag opt lp NAG C Library Manual

/* Read the objective function coefficients */
Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < n; ++i)
Vscanf("%lf",&cvec[i]);

/* Read the linear constraint matrix A. */
Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < nclin; ++i)
for (j = 0; j < n; ++j)
Vscanf("%lf",&a[i][j]);

/* Read the bounds. */
nbnd = n + nclin;
Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < nbnd; ++i)
Vscanf("%lf", &bl[i]);

Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < nbnd; ++i)
Vscanf("%lf", &bu[i]);

/* Read the initial estimate of x. */
Vscanf(" %*[^\n]"); /* Skip heading in data file */
for (i = 0; i < n; ++i)
Vscanf("%lf",&x[i]);

/* Solve the problem. */
e04mfc(n, nclin, (double *)a, tda, bl, bu, cvec,

x, &objf, E04_DEFAULT, NAGCOMM_NULL, &fail);

if (fail.code != NE_NOERROR) exit(EXIT_FAILURE);
} /* ex1 */

6.2. Program Data

e04mfc Example Program Data

Data for example 1.

Objective function coefficients
-0.02 -0.2 -0.2 -0.2 -0.2 0.04 0.04

Linear constraint matrix, A.
1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.0
0.02 0.04 0.01 0.02 0.02 0.0 0.0
0.02 0.03 0.0 0.0 0.01 0.0 0.0
0.70 0.75 0.80 0.75 0.80 0.97 0.0
0.02 0.06 0.08 0.12 0.02 0.01 0.97

Lower bounds
-0.01 -0.1 -0.01 -0.04 -0.1 -0.01 -0.01
-0.13 -1.0e21 -1.0e21 -1.0e21 -1.0e21 -0.0992 -0.003

Upper bounds
0.01 0.15 0.03 0.02 0.05 1.0e21 1.0e21
-0.13 -0.0049 -0.0064 -0.0037 -0.0012 1.0e21 0.002

Initial estimate of x
-0.01 -0.03 0.0 -0.01 -0.1 0.02 0.01

3.e04mfc.6 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

6.3. Program Results

e04mfc Example Program Results.

Example 1: default options used.

Parameters to e04mfc

Linear constraints............ 7 Number of variables........... 7

prob.................... Nag_LP start................... Nag_Cold
ftol.................... 1.05e-08 reset_ftol.............. 5
fcheck.................. 50 crash_tol............... 1.00e-02
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
max_iter................ 70 machine precision....... 1.11e-16
optim_tol............... 1.72e-13 min_infeas.............. FALSE
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag

Results from e04mfc:

Itn Jdel Jadd Step Ninf Sinf/Obj Bnd Lin Nart Nrz Norm Gz

0 0 0 0.0e+00 3 1.0380e-01 3 4 0 0 0.00e+00
1 9 U 13 L 4.1e-02 1 3.0000e-02 3 4 0 0 0.00e+00
2 12 U 4 L 4.2e-02 0 3.5000e-02 4 3 0 0 0.00e+00
3 3 L 14 L 1.9e-01 0 3.0902e-02 3 4 0 0 0.00e+00
4 11 U 10 U 1.5e-01 0 2.9897e-02 3 4 0 0 0.00e+00
5 4 L 3 U 3.7e-01 0 2.7257e-02 3 4 0 0 0.00e+00
6 10 U 4 U 6.5e-01 0 2.4038e-02 4 3 0 0 0.00e+00
7 5 L 2 L 4.6e+00 0 2.3596e-02 4 3 0 0 0.00e+00

Final solution:

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 LL -1.00000e-02 -1.0000e-02 1.0000e-02 3.301e-01 0.000e+00
V 2 LL -1.00000e-01 -1.0000e-01 1.5000e-01 1.438e-02 0.000e+00
V 3 UL 3.00000e-02 -1.0000e-02 3.0000e-02 -9.100e-02 0.000e+00
V 4 UL 2.00000e-02 -4.0000e-02 2.0000e-02 -7.661e-02 0.000e+00
V 5 FR -6.74853e-02 -1.0000e-01 5.0000e-02 0.000e+00 3.251e-02
V 6 FR -2.28013e-03 -1.0000e-02 None 0.000e+00 7.720e-03
V 7 FR -2.34528e-04 -1.0000e-02 None 0.000e+00 9.765e-03

LCon State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 EQ -1.30000e-01 -1.3000e-01 -1.3000e-01 -1.431e+00 0.000e+00
L 2 FR -5.47954e-03 None -4.9000e-03 0.000e+00 5.795e-04
L 3 FR -6.57192e-03 None -6.4000e-03 0.000e+00 1.719e-04
L 4 FR -4.84971e-03 None -3.7000e-03 0.000e+00 1.150e-03
L 5 FR -3.87485e-03 None -1.2000e-03 0.000e+00 2.675e-03
L 6 LL -9.92000e-02 -9.9200e-02 None 1.501e+00 0.000e+00
L 7 LL -3.00000e-03 -3.0000e-03 2.0000e-03 1.517e+00 6.939e-18

Exit after 7 iterations.

Optimal LP solution found.

Final LP objective value = 2.3596482e-02

[NP3491/6] 3.e04mfc.7

nag opt lp NAG C Library Manual

7. Further Description

This section gives a detailed description of the algorithm used in nag opt lp. This, and possibly
the next section, Section 8, may be omitted if the more sophisticated features of the algorithm and
software are not currently of interest.

7.1. Overview

nag opt lp is based on an inertia-controlling method due to Gill and Murray (1978) and is described
in detail by Gill et al (1991a). Here the main features of the method are summarized. Where
possible, explicit reference is made to the names of variables that are parameters of nag opt lp
or appear in the printed output. nag opt lp has two phases: finding an initial feasible point by
minimizing the sum of infeasibilities (the feasibility phase), and minimizing the linear objective
function within the feasible region (the optimality phase). The computations in both phases are
performed by the same functions. The two-phase nature of the algorithm is reflected by changing
the function being minimized from the sum of infeasibilities to the linear objective function. The
feasibility phase does not perform the standard simplex method (i.e., it does not necessarily find a
vertex), except in the LP case when mlin ≤ n. Once any iterate is feasible, all subsequent iterates
remain feasible.

In general, an iterative process is required to solve a linear program. (For simplicity, we shall always
consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate x̄
is defined by

x̄ = x+ αp, (1)

where the steplength α is a non-negative scalar, and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the optional parameter
ftol; see Section 8.2). The working set is the current prediction of the constraints that hold with
equality at a solution of an LP problem. The search direction is constructed so that the constraints
in the working set remain unaltered for any value of the step length. For a bound constraint in
the working set, this property is achieved by setting the corresponding component of the search
direction to zero. Thus, the associated variable is fixed and the specification of the working set
induces a partition of x into fixed and free variables. During a given iteration, the fixed variables
are effectively removed from the problem; since the relevant components of the search direction are
zero, the columns of A corresponding to fixed variables may be ignored.

Let mw denote the number of general constraints in the working set and let nfx denote the number
of variables fixed at one of their bounds (mw and nfx are the quantities Lin and Bnd in the printed
output from nag opt lp). Similarly, let nfr (nfr = n−nfx) denote the number of free variables. At
every iteration, the variables are re-ordered so that the last nfx variables are fixed, with all other
relevant vectors and matrices ordered accordingly.

7.2. Definition of the Search Direction

Let Afr denote the mw by nfr sub-matrix of general constraints in the working set corresponding
to the free variables, and let pfr denote the search direction with respect to the free variables only.
The general constraints in the working set will be unaltered by any move along p if

Afrpfr = 0. (2)

In order to compute pfr, the TQ factorization of Afr is used:

AfrQfr = (0 T), (3)

where T is a non-singular mw by mw upper triangular matrix (i.e., tij = 0 if i > j), and the non-
singular nfr by nfr matrix Qfr is the product of orthogonal transformations (see Gill et al (1984)).
If the columns of Qfr are partitioned so that

Qfr = (Z Y),

3.e04mfc.8 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

where Y is nfr × mw, then the nz (nz = nfr − mw) columns of Z form a basis for the null space
of Afr. Let nr be an integer such that 0 ≤ nr ≤ nz, and let Zr denote a matrix whose nr columns
are a subset of the columns of Z. (The integer nr is the quantity Nrz in the printed output from
nag opt lp. In many cases, Zr will include all the columns of Z.) The direction pfr will satisfy (2)
if

pfr = Zrpr, (4)

where pr is any nr-vector.

7.3. The Main Iteration

Let Q denote the n by n matrix

Q =
(

Qfr

Ifx

)
,

where Ifx is the identity matrix of order nfx. Let gq denote the transformed gradient

gq = QT c

and let the vector of first nr elements of gq be denoted by gr. The quantity gr is known as the
reduced gradient of cTx. If the reduced gradient is zero, x is a constrained stationary point in the
subspace defined by Z. During the feasibility phase, the reduced gradient will usually be zero only
at a vertex (although it may be zero at non-vertices in the presence of constraint dependencies).
During the optimality phase, a zero reduced gradient implies that x minimizes the linear objective
when the constraints in the working set are treated as equalities. At a constrained stationary point,
Lagrange multipliers λc and λb for the general and bound constraints are defined from the equations

AT
frλc = gfr and λb = gfx −AT

fxλc. (5)

Given a positive constant δ of the order of the machine precision, a Lagrange multiplier λj

corresponding to an inequality constraint in the working set is said to be optimal if λj ≤ δ when
the associated constraint is at its upper bound, or if λj ≥ −δ when the associated constraint is at its
lower bound. If a multiplier is non-optimal, the objective function (either the true objective or the
sum of infeasibilities) can be reduced by deleting the corresponding constraint (with index Jdel;
see Section 8.3) from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is non-zero,
there is no feasible point, and nag opt lp will continue until the minimum value of the sum of
infeasibilities has been found. At this point, the Lagrange multiplier λj corresponding to an
inequality constraint in the working set will be such that −(1 + δ) ≤ λj ≤ δ when the associated
constraint is at its upper bound, and −δ ≤ λj ≤ (1 + δ) when the associated constraint is at its
lower bound. Lagrange multipliers for equality constraints will satisfy |λj | ≤ 1 + δ.

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the non-zero
elements of the search direction p are given by Zrpr. The choice of step length is influenced by the
need to maintain feasibility with respect to the satisfied constraints.

Each change in the working set leads to a simple change to Afr: if the status of a general constraint
changes, a row of Afr is altered; if a bound constraint enters or leaves the working set, a column of
Afr changes. Explicit representations are recurred of the matrices T and Qfr and of vectors Q

T g,
and QT c.

One of the most important features of nag opt lp is its control of the conditioning of the working
set, whose nearness to linear dependence is estimated by the ratio of the largest to smallest diagonal
elements of the TQ factor T (the printed value Cond T; see Section 8.3). In constructing the initial
working set, constraints are excluded that would result in a large value of Cond T.

nag opt lp includes a rigorous procedure that prevents the possibility of cycling at a point where the
active constraints are nearly linearly dependent (see Gill et al (1989)). The main feature of the anti-
cycling procedure is that the feasibility tolerance is increased slightly at the start of every iteration.
This not only allows a positive step to be taken at every iteration, but also provides, whenever

[NP3491/6] 3.e04mfc.9

nag opt lp NAG C Library Manual

possible, a choice of constraints to be added to the working set. Let αm denote the maximum
step at which x + αmp does not violate any constraint by more than its feasibility tolerance. All
constraints at a distance α (α ≤ αm) along p from the current point are then viewed as acceptable
candidates for inclusion in the working set. The constraint whose normal makes the largest angle
with the search direction is added to the working set.

7.4. Choosing the Initial Working Set

Let Z be partitioned as Z = (Zr Za). A working set for which Zr defines the null space can
be obtained by including the rows of ZT

a as ‘artificial constraints’. Minimization of the objective
function then proceeds within the subspace defined by Zr, as described in Section 7.2.

The artificially augmented working set is given by

Āfr =
(

Za
T

Afr

)
, (6)

so that pfr will satisfy Afrpfr = 0 and Za
T pfr = 0. By definition of the TQ factorization, Āfr

automatically satisfies the following:

ĀfrQfr =
(

Za
T

Afr

)
Qfr =

(
Za

T

Afr

)
(Zr Za Y) = (0 T̄),

where

T̄ =
(

I 0
0 T

)
,

and hence the TQ factorization of (6) is available trivially from T and Qfr without additional
expense.

The matrix Za is not kept fixed, since its role is purely to define an appropriate null space; the
TQ factorization can therefore be updated in the normal fashion as the iterations proceed. No
work is required to ‘delete’ the artificial constraints associated with Za when Zr

T gfr = 0, since this
simply involves repartitioning Qfr. The ‘artificial’ multiplier vector associated with the rows of
Za

T is equal to Za
T gfr, and the multipliers corresponding to the rows of the ‘true’ working set are

the multipliers that would be obtained if the artificial constraints were not present. If an artificial
constraint is ‘deleted’ from the working set, an A appears alongside the entry in the Jdel column
of the printed output (see Section 8.3).

The number of columns in Za and Zr and the Euclidean norm of Zr
T gfr, appear in the printed

output as Nart, Nrz and Norm Gz (see Section 8.3).

Under some circumstances, a different type of artificial constraint is used when solving a linear
program. Although the algorithm of nag opt lp does not usually perform simplex steps (in the
traditional sense), there is one exception: a linear program with fewer general constraints than
variables (i.e., mlin ≤ n). (Use of the simplex method in this situation leads to savings in storage.)
At the starting point, the ‘natural’ working set (the set of constraints exactly or nearly satisfied at
the starting point) is augmented with a suitable number of ‘temporary’ bounds, each of which has
the effect of temporarily fixing a variable at its current value. In subsequent iterations, a temporary
bound is treated as a standard constraint until it is deleted from the working set, in which case it
is never added again. If a temporary bound is ‘deleted’ from the working set, an F (for ‘Fixed’)
appears alongside the entry in the Jdel column of the printed output (see Section 8.3).

8. Optional Parameters

A number of optional input and output parameters to nag opt lp are available through the structure
argument options, type Nag E04 Opt. A parameter may be selected by assigning an appropriate
value to the relevant structure member; those parameters not selected will be assigned default
values. If no use is to be made of any of the optional parameters the user should use the NAG
defined null pointer, E04 DEFAULT, in place of options when calling nag opt lp; the default settings
will then be used for all parameters.

3.e04mfc.10 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

Before assigning values to options directly the structure must be initialised by a call to the function
nag opt init (e04xxc). Values may then be assigned to the structure members in the normal C
manner.

Option settings may also be read from a file using the function nag opt read (e04xyc) in which case
initialisation of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialisation.

If assignment of functions and memory to pointers in the options structure is required, this must
be done directly in the calling program; they cannot be assigned using nag opt read (e04xyc).

8.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag opt lp
together with their default values where relevant. The number ε is a generic notation for machine
precision (see nag machine precision (X02AJC)).

Nag ProblemType prob Nag LP
Nag Start start Nag Cold
Boolean list TRUE
Nag PrintType print level Nag Soln Iter
char outfile[80] stdout
void (*print fun)() NULL
Integer max iter max(50, 5(n+nclin))
double crash tol 0.01
double ftol

√
ε

double optim tol ε0.8

Integer reset ftol 10000
Integer fcheck 50
double inf bound 1020

double inf step max(inf bound,1020)
Integer *state size n+nclin
double *ax size nclin
double *lambda size n+nclin
Integer iter

8.2. Description of Optional Parameters

prob – Nag ProblemType Default = Nag LP
Input: specifies the problem type. The following are the two possible values of prob and the
size of the array cvec that is required to define the objective function:

Nag FP cvec not accessed;

Nag LP cvec[n] required;

Nag FP denotes a feasible point problem and Nag LP a linear programming problem.
Constraint: options.prob = Nag FP or Nag LP.

start – Nag Start Default = Nag Cold
Input: specifies how the initial working set is chosen. With options.start = Nag Cold,
nag opt lp chooses the initial working set based on the values of the variables and constraints
at the initial point. Broadly speaking, the initial working set will include equality constraints
and bounds or inequality constraints that violate or ‘nearly’ satisfy their bounds (to within
crash tol; see below).

With options.start = Nag Warm, the user must provide a valid definition of every element
of the array pointer options.state (see below for the definition of this member of options).
nag opt lp will override the users’ specification of state if necessary, so that a poor choice of
the working set will not cause a fatal error. Nag Warm will be advantageous if a good estimate
of the initial working set is available – for example, when nag opt lp is called repeatedly to
solve related problems.
Constraint: options.start = Nag Cold or Nag Warm.

[NP3491/6] 3.e04mfc.11

nag opt lp NAG C Library Manual

list – Boolean Default = TRUE
Input: if options.list = TRUE the parameter settings in the call to nag opt lp will be printed.

print level – Nag PrintType Default = Nag Soln Iter
Input: the level of results printout produced by nag opt lp. The following values are available.

Nag NoPrint No output.
Nag Soln The final solution.
Nag Iter One line of output for each iteration.
Nag Iter Long A longer line of output for each iteration with more information

(line exceeds 80 characters).
Nag Soln Iter The final solution and one line of output for each iteration.
Nag Soln Iter Long The final solution and one long line of output for each iteration

(line exceeds 80 characters).
Nag Soln Iter Const As Nag Soln Iter Long with the Lagrange multipliers, the

variables x, the constraint values Ax and the constraint status
also printed at each iteration.

Nag Soln Iter Full As Nag Soln Iter Const with the diagonal elements of the upper
triangular matrix T associated with the TQ factorization (3) of
the working set.

Details of each level of results printout are described in Section 8.3.
Constraint: options.print level = Nag NoPrint or Nag Soln or Nag Iter or Nag Soln Iter or
Nag Iter Long or Nag Soln Iter Long or Nag Soln Iter Const or Nag Soln Iter Full.

outfile – char[80] Default = stdout

Input: the name of the file to which results should be printed. If options.outfile[0] = ’\0’ then
the stdout stream is used.

print fun – pointer to function Default = NULL
Input: printing function defined by the user; the prototype of print fun is

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 8.3.1.below for further details.

max iter – Integer Default = max (50,5(n + nclin))
Input: max iter specifies the maximum number of iterations to be performed by nag opt lp.

If the user wishes to check that a call to nag opt lp is correct before attempting to solve the
problem in full then max iter may be set to 0. No iterations will then be performed but the
initialisation stages prior to the first iteration will be processed and a listing of parameter
settings output if options.list = TRUE (the default setting).
Constraint: options.max iter ≥ 0.

crash tol – double Default = 0.01
Input: crash tol is used in conjunction with the optional parameter start. When options.start
has the default setting, i.e., options.start = Nag Cold, nag opt lp selects an initial working
set. The initial working set will include bounds or general inequality constraints that lie
within crash tol of their bounds. In particular, a constraint of the form aj

Tx ≥ l will be
included in the initial working set if |aj

Tx− l| ≤ crash tol × (1 + |l|).
Constraint: 0.0 ≤ options.crash tol ≤ 1.0.

ftol – double Default =
√
ε

Input: ftol defines the maximum acceptable absolute violation in each constraint at a ‘feasible’
point. For example, if the variables and the coefficients in the general constraints are of order
unity, and the latter are correct to about 6 decimal digits, it would be appropriate to specify
ftol as 10−6.

nag opt lp attempts to find a feasible solution before optimizing the objective function. If
the sum of infeasibilities cannot be reduced to zero, nag opt lp finds the minimum value of

3.e04mfc.12 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

the sum. Let Sinf be the corresponding sum of infeasibilities. If Sinf is quite small, it may
be appropriate to raise ftol by a factor of 10 or 100. Otherwise, some error in the data should
be suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the
tolerance ftol.
Constraint: options.ftol > 0.0.

optim tol – double Default = ε0.8

Input: options.optim tol defines the tolerance used to determine whether the bounds and
generated constraints have the correct sign for the solution to be judged optimal.

reset ftol – Integer Default = 10000

Input: this option is part of an anti-cycling procedure designed to guarantee progress even
on highly degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the
constraints by a small amount. Suppose that the value of the optional parameter ftol is δ.
Over a period of reset ftol iterations, the feasibility tolerance actually used by nag opt lp
increases from 0.5δ to δ (in steps of 0.5δ/reset ftol).

At certain stages the following ‘resetting procedure’ is used to remove constraint infeasibilities.
First, all variables whose upper or lower bounds are in the working set are moved exactly
onto their bounds. A count is kept of the number of nontrivial adjustments made. If the
count is positive, iterative refinement is used to give variables that satisfy the working set to
(essentially) machine precision. Finally, the current feasibility tolerance is reinitialized to
0.5δ.

If a problem requires more than reset ftol iterations, the resetting procedure is invoked and
a new cycle of reset ftol iterations is started. (The decision to resume the feasibility phase or
optimality phase is based on comparing any constraint infeasibilities with δ.)

The resetting procedure is also invoked when nag opt lp reaches an apparently optimal,
infeasible or unbounded solution, unless this situation has already occurred twice. If any
nontrivial adjustments are made, iterations are continued.
Constraint: 0 < options.reset ftol < 10000000.

fcheck – Integer Default = 50

Input: every fcheck iterations, a numerical test is made to see if the current solution x satisfies
the constraints in the working set. If the largest residual of the constraints in the working
set is judged to be too large, the current working set is re-factorized and the variables are
recomputed to satisfy the constraints more accurately.
Constraint: options.fcheck ≥ 1.

inf bound – double Default = 1020

Input: inf bound defines the ‘infinite’ bound in the definition of the problem constraints. Any
upper bound greater than or equal to inf bound will be regarded as plus infinity (and similarly
for a lower bound less than or equal to −inf bound).
Constraint: options.inf bound > 0.0.

inf step – double Default = max (inf bound,1020)

Input: inf step specifies the magnitude of the change in variables that will be considered a
step to an unbounded solution. (Note that an unbounded solution can occur only when the
problem is of type Nag LP). If the change in x during an iteration would exceed the value of
inf step, the objective function is considered to be unbounded below in the feasible region.
Constraint: options.inf step > 0.0.

[NP3491/6] 3.e04mfc.13

nag opt lp NAG C Library Manual

state – Integer * Default memory = n+nclin

Input: state need not be set if the default option of options.start = Nag Cold is used as
n+nclin values of memory will be automatically allocated by nag opt lp.

If the option start = Nag Warm has been chosen, state must point to a minimum of n+nclin
elements of memory. This memory will already be available if the options structure has been
used in a previous call to nag opt lp from the calling program, using the same values of n and
nclin and start = Nag Cold. If a previous call has not been made sufficient memory must be
allocated to state by the user.

When a warm start is chosen state should specify the desired status of the constraints at the
start of the feasibility phase. More precisely, the first n elements of state refer to the upper
and lower bounds on the variables, and the next mlin elements refer to the general linear
constraints (if any). Possible values for state[j] are as follows:

state[j] Meaning

0 The corresponding constraint should not be in the initial working set.

1 The constraint should be in the initial working set at its lower bound.

2 The constraint should be in the initial working set at its upper bound.

3 The constraint should be in the initial working set as an equality. This value
should only be specified if bl[j] = bu[j]. The values 1,2 or 3 all have the same
effect when bl[j] = bu[j].

The values −2,−1 and 4 are also acceptable but will be reset to zero by the function. In
particular, if nag opt lp has been called previously with the same values of n and nclin, state
already contains satisfactory information. (See also the description of the optional parameter
start). The function also adjusts (if necessary) the values supplied in x to be consistent with
the values supplied in state.

Output: if nag opt lp exits with fail.code = NE NOERROR, NW SOLN NOT UNIQUE or
NW NOT FEASIBLE, the values in state indicate the status of the constraints in the working
set at the solution. Otherwise, state indicates the composition of the working set at the final
iterate. The significance of each possible value of state[j] is as follows:

state[j] Meaning

−2 The constraint violates its lower bound by more than the feasibility tolerance.

−1 The constraint violates its upper bound by more than the feasibility tolerance.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the
working set.

1 This inequality constraint is included in the working set at its lower bound.

2 This inequality constraint is included in the working set at its upper bound.

3 This constraint is included in the working set as an equality. This value of state
can occur only when bl[j] = bu[j].

4 This corresponds to optimality being declared with x[j] being temporarily fixed
at its current value. This value of state can only occur when fail.code =
NW SOLN NOT UNIQUE.

ax – double * Default memory = nclin

Input: nclin values of memory will be automatically allocated by nag opt lp and this is the
recommended method of use of options.ax. However a user may supply memory from the
calling program.
Output: If nclin > 0, ax points to the final values of the linear constraints Ax.

3.e04mfc.14 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

lambda – double * Default memory = n+nclin
Input: n+nclin values of memory will be automatically allocated by nag opt lp and this is
the recommended method of use of options.lambda. However a user may supply memory
from the calling program.
Output: the values of the Lagrange multipliers for each constraint with respect to the current
working set. The first n elements contain the multipliers for the bound constraints on the
variables, and the next mlin elements contain the multipliers for the general linear constraints
(if any). If state[j] = 0 (i.e., constraint j is not in the working set), lambda[j] is zero. If x
is optimal, lambda[j] should be non-negative if state[j] = 1, non-positive if state[j] = 2 and
zero if state[j] = 4.

iter – Integer
Output: the total number of iterations performed in the feasibility phase and (if appropriate)
the optimality phase.

8.3. Description of Printed Output

The level of printed output can be controlled by the user with the structure members options.list
and options.print level (see Section 8.2). If list = TRUE then the parameter values to nag opt lp
are listed, whereas the printout of results is governed by the value of print level. The default of
print level = Nag Soln Iter provides a single line of output at each iteration and the final result.
This section describes all of the possible levels of results printout available from nag opt lp.

The convention for numbering the constraints in the iteration results is that indices 1 to n refer
to the bounds on the variables, and indices n + 1 to n + mlin refer to the general constraints.
When the status of a constraint changes, the index of the constraint is printed, along with the
designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed variable) or A
(artificial constraint).

When print level=Nag Iter orNag Soln Iter the following line of output is produced on completion
of each iteration.

Itn the iteration count.

Jdel the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd the index of the constraint added to the working set. If Jadd is zero, no constraint
was added.

Step the step taken along the computed search direction. If a constraint is added during
the current iteration (i.e., Jadd is positive), Step will be the step to the nearest
constraint. During the optimality phase, the step can be greater than one only if
the reduced Hessian is not positive-definite.

Ninf the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Obj the value of the current objective function. If x is not feasible, Sinf gives a weighted
sum of the magnitudes of constraint violations. If x is feasible, Obj is the value
of the objective function. The output line for the final iteration of the feasibility
phase (i.e., the first iteration for which Ninf is zero) will give the value of the true
objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities
will not increase until either a feasible point is found, or the optimality of the
multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasibilities
will either remain constant or be reduced until the minimum sum of infeasibilities
is found.

Bnd the number of simple bound constraints in the current working set.

[NP3491/6] 3.e04mfc.15

nag opt lp NAG C Library Manual

Lin the number of general linear constraints in the current working set.

Nart the number of artificial constraints in the working set, i.e., the number of columns
of Za (see Section 7). At the start of the optimality phase, Nart provides an
estimate of the number of nonpositive eigenvalues in the reduced Hessian.

Nrz is the number of columns of Zr (see Section 7).Nrz is the dimension of the subspace
in which the objective function is currently being minimized. The value of Nrz is
the number of variables minus the number of constraints in the working set; i.e.,
Nrz = n− (Bnd+ Lin+ Nart).

The value of nz, the number of columns of Z (see Section 7) can be calculated as
nz = n − (Bnd + Lin). A zero value of nz implies that x lies at a vertex of the
feasible region.

Norm Gz ‖Zr
T gfr‖, the Euclidean norm of the reduced gradient with respect to Zr. During

the optimality phase, this norm will be approximately zero after a unit step.

If print level = Nag Iter Long, Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full the
line of printout is extended to give the following information. (Note this longer line extends over
more than 80 characters).

NOpt is the number of non-optimal Lagrange multipliers at the current point. NOpt is
not printed if the current x is infeasible or no multipliers have been calculated. At
a minimizer, NOpt will be zero.

Min LM is the value of the Lagrange multiplier associated with the deleted constraint. If
Min LM is negative, a lower bound constraint has been deleted; if Min LM is positive,
an upper bound constraint has been deleted. If no multipliers are calculated during
a given iteration, Min LM will be zero.

Cond T is a lower bound on the condition number of the working set.

When options.print level = Nag Soln Iter Const or Nag Soln Iter Full more detailed results are
given at each iteration. For the setting Nag Soln Iter Const additional values output are:

Value of x the value of x currently held in x.

State the current value of options.state associated with x.

Value of Ax the value of Ax currently held in options.ax.

State the current value of options.state associated with Ax.

Also printed are the Lagrange Multipliers for the bound constraints, linear constraints and artificial
constraints.

If print level = Nag Soln Iter Full then the diagonal of T and Zr are also output at each iteration.

When print level = Nag Soln, Nag Soln Iter, Nag Soln Iter Const or Nag Soln Iter Full the final
printout from nag opt lp includes a listing of the status of every variable and constraint. The
following describes the printout for each variable.

Varbl the name (V) and index j, for j = 1, 2, . . . , n of the variable.

State the state of the variable (FR if neither bound is in the working set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily fixed
at its current value). If Value lies outside the upper or lower bounds by more than
the feasibility tolerance, State will be ++ or -- respectively.

Value the value of the variable at the final iteration.

Lower bound the lower bound specified for the variable.
(None indicates that bl[j − 1] ≤ -inf bound.)

3.e04mfc.16 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

Upper bound the upper bound specified for the variable.
(None indicates that bu[j − 1] ≥ inf bound.)

Lagr mult the value of the Lagrange multiplier for the associated bound constraint. This will
be zero if State is FR. If x is optimal, the multiplier should be non-negative if
State is LL, and non-positive if State is UL.

Residual the difference between the variable Value and the nearer of its bounds bl[j − 1]
and bu[j − 1].

The meaning of the printout for general constraints is the same as that given above for variables,
with ‘variable’ replaced by ‘constraint’, and with the following change in the heading:

LCon the name (L) and index j, for j = 1, 2, . . . ,mlin of the constraint.

8.3.1. Output of results via a user defined printing function

Users may also specify their own print function for output of iteration results and the final solution
by use of the options.print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

The rest of this section can be skipped by a user who only wishes to use the default printing
facilities.

When a user defined function is assigned to options.print fun this will be called in preference to
the internal print function of nag opt lp. Calls to the user defined function are again controlled by
means of the options.print level member. Information is provided through st and comm, the two
structure arguments to print fun.

If comm->it prt = TRUE then the results from the last iteration of nag opt lp are set in the
following members of st:

first – Boolean
TRUE on the first call to print fun.

iter – Integer
the number of iterations performed.

n – Integer
the number of variables.

nclin – Integer
the number of linear constraints.

jdel – Integer
index of constraint deleted.

jadd – Integer
index of constraint added.

step – double
the step taken along the current search direction.

ninf – Integer
the number of infeasibilities.

f – double
the value of the current objective function.

bnd – Integer
number of bound constraints in the working set.

lin – Integer
number of general linear constraints in the working set.

nart – Integer
number of artificial constraints in the working set.

[NP3491/6] 3.e04mfc.17

nag opt lp NAG C Library Manual

nrz – Integer
number of columns of Zr.

norm gz – double
Euclidean norm of the reduced gradient, ‖Zr

T gfr‖.
nopt – Integer

number of non-optimal Lagrange multipliers.

min lm – double
value of the Lagrange multiplier associated with the deleted constraint.

condt – double
a lower bound on the condition number of the working set.

x – double *
x points to the n memory locations holding the current point x.

ax – double *
ax points to the nclin memory locations holding the current values Ax.

state – Integer *
state points to the n+nclin memory locations holding the status of the variables and general
linear constraints. See Section 8.2 for a description of the possible status values.

t – double *
the upper triangular matrix T with st->lin columns. Matrix element i, j is held in
st->t[(i− 1)*st->tdt + j − 1].

tdt – Integer
the trailing dimension for st->t.

If comm->new lm = TRUE then the Lagrange multipliers have been updated and the following
members, kx, kactive, lambda and gq, are set:

kx – Integer *
Indices of the bound constraints with associated multipliers.
Value of st->kx[i] is the index of the constraint with multiplier st->lambda[i] for i =
0, 1, . . . ,st->bnd−1.

kactive – Integer *
Indices of the linear constraints with associated multipliers.
Value of st->kactive[i] is the index of the constraint with multiplier st->lambda[st->bnd + i]
for i = 0, 1, . . . ,st->lin−1.

lambda – double *
the multipliers for the constraints in the working set. lambda[i] for i = 0, 1, . . . ,st->bnd−1
hold the multipliers for the bound constraints while the multipliers for the linear constraints
are held at indices i = st->bnd,. . .,st->bnd + st->lin−1.

gq – double *
st->gq[i] for i = 0, 1, . . .,st->nart − 1 hold the multipliers for the artificial constraints.

The following members of st are also relevant and apply when comm->it prt or comm->new lm is
TRUE.

refactor – Boolean
TRUE if iterative refinement performed. See Section 7.3 and optional parameter reset ftol.

jmax – Integer
if st->refactor = TRUE then st->jmax holds the index of the constraint with the maximum
violation.

errmax – double
if st->refactor = TRUE then st->errmax holds the value of the maximum violation.

3.e04mfc.18 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

moved – Boolean
TRUE if some variables moved to their bounds. See the optional parameter reset ftol.

nmoved – Integer
if st->moved = TRUE then st->nmoved holds the number of variables which were moved to
their bounds.

rowerr – Boolean
TRUE if some constraints are not satisfied to within options.ftol.

feasible – Boolean
TRUE when a feasible point has been found.

If comm->sol prt = TRUE then the final result from nag opt lp is available and the following
members of st are set:

iter – Integer
the number of iterations performed.

n – Integer
the number of variables.

nclin – Integer
the number of linear constraints.

x – double *
x points to the n memory locations holding the final point x.

f – double
the final objective function value or, if x is not feasible, the sum of infeasibilities. If the
problem is of type Nag FP and x is feasible then f is set to zero.

ax – double *
ax points to the nclin memory locations holding the final values Ax.

state – Integer *
state points to the n+nclin memory locations holding the final status of the variables and
general linear constraints. See Section 8.2for a description of the possible status values.

lambda – double *
lambda points to the n + nclin final values of the Lagrange multipliers.

bl – double *
bl points to the n + nclin lower bound values.

bu – double *
bu points to the n + nclin upper bound values.

endstate – Nag EndState
the state of termination of nag opt lp. Possible values of endstate and their correspondence
to the exit value of fail.code are:

Value of endstate Value of fail.code

Nag Feasible and Nag Optimal NE NOERROR
Nag Weakmin NW SOLN NOT UNIQUE
Nag Unbounded NE UNBOUNDED
Nag Infeasible NW NOT FEASIBLE
Nag Too Many Iter NW TOO MANY ITER

The relevant members of the structure comm are:

it prt – Boolean
will be TRUE when the print function is called with the result of the current iteration.

sol prt – Boolean
will be TRUE when the print function is called with the final result.

[NP3491/6] 3.e04mfc.19

nag opt lp NAG C Library Manual

new lm – Boolean
will be TRUE when the Lagrange multipliers have been updated.

user – double *
iuser – Integer *
p – Pointer

Pointers for communication of user information. If used they must be allocated memory by
the user either before entry to nag opt lp or during a call to print fun. The type Pointer is
void *.

9. Error Indications and Warnings

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.
On entry, nclin must not be less than 0: nclin = 〈value〉.

NE 2 INT ARG LT
On entry, tda = 〈value〉 while n = 〈value〉. These parameters must satisfy tda ≥ n.

NE OPT NOT INIT
options structure not initialised.

NE BAD PARAM
On entry parameter options.print level had an illegal value.
On entry parameter options.prob had an illegal value.
On entry parameter options.start had an illegal value.

NE INVALID INT RANGE 1
Value 〈value〉 given to options.max iter not valid. Correct range is max iter ≥ 0.
Value 〈value〉 given to options.fcheck not valid. Correct range is fcheck ≥ 1.

NE INVALID INT RANGE 2
Value 〈value〉given to options.reset ftol not valid. Correct range is 0 < reset ftol < 10000000.

NE INVALID REAL RANGE FF
Value 〈value〉 given to options.crash tol not valid. Correct range is 0.0 ≤ crash tol ≤ 1.0.

NE INVALID REAL RANGE F
Value 〈value〉 given to options.ftol not valid. Correct range is ftol > 0.0.
Value 〈value〉 given to options.inf bound not valid. Correct range is inf bound > 0.0.
Value 〈value〉 given to options.inf step not valid. Correct range is inf step > 0.0.

NE CVEC NULL
options.prob = 〈value〉 but argument cvec = NULL.

NE WARM START
options.start = Nag Warm but pointer options.state = NULL.

NE BOUND
The lower bound for variable 〈value〉 (array element bl[〈value〉]) is greater than the upper
bound.

NE BOUND LCON
The lower bound for linear constraint 〈value〉 (array element bl[〈value〉]) is greater than the
upper bound.

NE STATE VAL
options.state[〈value〉] is out of range. state[〈value〉] = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

If one of the above exits occurs, no values will have been assigned to objf, or to options.ax and
options.lambda. x and options.state will be unchanged.

3.e04mfc.20 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

NW SOLN NOT UNIQUE
Optimal solution is not unique.

x is a weak local minimum (the projected gradient is negligible, the Lagrange multipliers are
optimal but there is a small multiplier). This means that the solution x is not unique.

NE UNBOUNDED
Solution appears to be unbounded.

This value of fail.code implies that a step as large as options.inf step would have to be taken
in order to continue the algorithm. This situation can occur only when the problem is of type
Nag LP and at least one variable has no upper or lower bound.

NW NOT FEASIBLE
No feasible point was found for the linear constraints.

It was not possible to satisfy all the constraints to within the feasibility tolerance. In this
case, the constraint violations at the final x will reveal a value of the tolerance for which a
feasible point will exist – for example, if the feasibility tolerance for each violated constraint
exceeds its Residual at the final point. The user should check that there are no constraint
redundancies. If the data for the constraints are accurate only to the absolute precision σ,
the user should ensure that the value of the optional parameter ftol is greater than σ. For
example, if all elements of A are of order unity and are accurate only to three decimal places,
the optional parameter ftol should be at least 10−3.

NW TOO MANY ITER
The maximum number of iterations, 〈value〉, have been performed.
The value of the optional parameter max iter may be too small. If the method appears to
be making progress (e.g. the objective function is being satisfactorily reduced), increase the
value of options.max iter and rerun nag opt lp (possibly using the options.start = Nag Warm
facility to specify the initial working set).

NW OVERFLOW WARN
Serious ill-conditioning in the working set after adding constraint 〈value〉. Overflow may
occur in subsequent iterations.

If overflow occurs preceded by this warning then serious ill-conditioning has probably occurred
in the working set when adding a constraint. It may be possible to avoid the difficulty by
increasing the magnitude of the optional parameter ftol and re-running the program. If the
message recurs even after this change, the offending linearly dependent constraint j must be
removed from the problem.

NE NOT APPEND FILE
Cannot open file 〈string〉 for appending.

NE WRITE ERROR
Error occurred when writing to file 〈string〉.

NE NOT CLOSE FILE
Cannot close file 〈string〉.

10. Further Comments

Sensible scaling of the problem is likely to reduce the number of iterations required and make the
problem less sensitive to perturbations in the data, thus improving the condition of the problem.
In the absence of better information it is usually sensible to make the Euclidean lengths of each
constraint of comparable magnitude. See the Chapter Introduction and Gill et al(1986) for further
information and advice.

10.1. Accuracy

nag opt lp implements a numerically stable active set strategy and returns solutions that are as
accurate as the condition of the problem warrants on the machine.

[NP3491/6] 3.e04mfc.21

nag opt lp NAG C Library Manual

11. References

Gill P E, Hammarling S J, Murray W, Saunders M A and Wright M H (1986) User’s Guide for
LSSOL (Version 1.0): A Fortran Package for Constrained Least-squares and Convex Quadratic
Programming Report SOL 86-1, Department of Operations Research, Stanford University.

Gill P E and Murray W (1978) Numerically Stable Methods for Quadratic Programming
Mathematical Programming 14 349–372.

Gill P E, Murray W, Saunders M A and Wright M H (1984) Procedures for Optimization Problems
with a Mixture of Bounds and General Linear Constraints ACM Trans. Math. Softw. 10
282–298.

Gill P E, Murray W, Saunders M A and Wright M H (1989) A Practical Anti-cycling Procedure
for Linearly Constrained Optimization Mathematical Programming 45 437–474.

Gill P E, Murray W, Saunders M A and Wright M H (1991a) Inertia-controlling Methods for
General Quadratic Programming SIAM Review 33 1–36.

Gill P E, Murray W and Wright M H (1991b) Numerical Linear Algebra and Optimization
(Volume 1) Addison Wesley, Redwood City, California.

12. See Also

nag opt qp (e04nfc)
nag opt init (e04xxc)
nag opt read (e04xyc)
nag opt free (e04xzc)

13. Example 2

This example is a portfolio investment problem taken from Gill et al (1991b). The objective function
to be minimized is

−5x1 − 2x3

subject to the bounds

x1 ≥ −75
x2 ≥ −1000
x3 ≥ −25

and the general constraints

20x1 + 2x2 + 100x3 = 0
18x1 + 3x2 + 102x3 ≥ −600
15x1 −

1
2
x2 − 25x3 ≥ 0

−5x1 +
3
2
x2 − 25x3 ≥ −500

−5x1 −
1
2
x2 + 75x3 ≥ −1000

The initial point, which is feasible, is

x0 = (10.0, 20.0, 100.0)T .

The solution is

x∗ = (75.0, −250.0, −10.0)T .

Three general constraints are active at the solution, the bound constraints are all inactive.

This example shows an optional parameter value assigned directly within the program text while
others are read from a data file. The options structure is declared and initialised by nag opt init
(e04xxc), a value is assigned directly to option inf bound and nag opt lp is then called. On successful
return two further options are read from a data file by use of nag opt read (e04xyc) and the problem
is re-run. The memory freeing function nag opt free (e04xzc) is used to free the memory assigned

3.e04mfc.22 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

to the pointers in the options structure. Users should not use the standard C function free() for
this purpose.

13.1. Program Text

static void ex2()
{

/* This sample linear program (LP) is a portfolio investment problem
* (see Chapter 7, pp 258--262 of ‘‘Numerical Linear Algebra and
* Optimization’’, by Gill, Murray and Wright, Addison Wesley, 1991).
* The problem involves the rearrangement of a portfolio of three
* stocks, Glitter, Risky and Trusty, so that the net worth of the
* investor is maximized.
* The problem is characterized by the following data:
* Glitter Risky Trusty
* 1990 Holdings 75 1000 25
* 1990 Priceshare($) 20 2 100
* 2099 Priceshare($) 18 3 102
* 2099 Dividend 5 0 2
*
* The variables x[0], x[1] and x[2] represent the change in each of
* the three stocks.
*/

double x[MAXN], cvec[MAXN];
double a[MAXLIN][MAXN];
double bl[MAXBND], bu[MAXBND];
double bigbnd, objf;
Integer n, tda, nclin;
Boolean print;
Nag_E04_Opt options;
static NagError fail, fail2;

Vprintf("\nExample 2: some optional parameters are set.\n");

fail.print = TRUE;
fail2.print = TRUE;

/* Set the actual problem dimensions.
* n = the number of variables.
* nclin = the number of general linear constraints (may be 0).
*/
tda = MAXN;
n = 3;
nclin = 5;

/* Define the value used to denote ‘‘infinite’’ bounds. */
bigbnd = 1e+25;

/* Objective function: maximize 5*X[0] + 2*X[2], or equivalently,
* minimize -5*X[0] - 2*X[2].
*/
cvec[0] = -5.0;
cvec[1] = 0.0;
cvec[2] = -2.0;

/* a = the general constraint matrix.
* bl = the lower bounds on x and A*x.
* bu = the upper bounds on x and A*x.
* x = the initial estimate of the solution.
*
* A nonnegative amount of stock must be present after rearrangement.
* For Glitter: x[0] + 75 >= 0.
*/
bl[0] = -75.0;
bu[0] = bigbnd;

/* For Risky: x[1] + 1000 >= 0. */
bl[1] = -1000.0;
bu[1] = bigbnd;

[NP3491/6] 3.e04mfc.23

nag opt lp NAG C Library Manual

/* For Trusty: x[2] + 25 >= 0. */
bl[2] = -25.0;
bu[2] = bigbnd;

/* The current value of the portfolio must be the same after
* rearrangement, i.e.,
* 20*(75+x[0]) + 2*(1000+x[1]) + 100*(25+x[2]) = 6000, or
* 20*x[0] + 2*x[1] + 100*x[2] = 0.
*/
a[0][0] = 20.0;
a[0][1] = 2.0;
a[0][2] = 100.0;
bl[n] = 0.0;
bu[n] = 0.0;

/* The value of the portfolio must increase by at least 5 per cent
* at the end of the year, i.e.,
* 18*(75+x[0]) + 3*(1000+x[1]) + 102*(25+x[2]) >= 6300, or
* 18*x[0] + 3*x[1] + 102*x[2] >= -600.
*/
a[1][0] = 18.0;
a[1][1] = 3.0;
a[1][2] = 102.0;
bl[n + 1] = -600.0;
bu[n + 1] = bigbnd;

/* There are three ‘‘balanced portfolio’’ constraints. The value of
* a stock must constitute at least a quarter of the total final
* value of the portfolio. After rearrangement, the value of the
* portfolio after is 20*(75+x[0]) + 2*(1000+x[1]) + 100*(25+x[2]).
*
* If Glitter is to constitute at least a quarter of the final
* portfolio, then 15*x[0] - 0.5*x[1] - 25*x[2] >= 0.
*/
a[2][0] = 15.0;
a[2][1] = -0.5;
a[2][2] = -25.0;
bl[n + 2] = 0.0;
bu[n + 2] = bigbnd;

/* If Risky is to constitute at least a quarter of the final
* portfolio, then -5*x[0] + 1.5*x[1] - 25*x[2] >= -500.
*/
a[3][0] = -5.0;
a[3][1] = 1.5;
a[3][2] = -25.0;
bl[n + 3] = -500.0;
bu[n + 3] = bigbnd;

/* If Trusty is to constitute at least a quarter of the final
* portfolio, then -5*x[0] - 0.5*x[1] + 75*x[2] >= -1000.
*/
a[4][0] = -5.0;
a[4][1] = -0.5;
a[4][2] = 75.0;
bl[n + 4] = -1000.0;
bu[n + 4] = bigbnd;

/* Set the initial estimate of the solution.
* This portfolio is infeasible.
*/
x[0] = 10.0;
x[1] = 20.0;
x[2] = 100.0;

/* Initialise options structure to null values. */
e04xxc(&options);

/* Set one option */
options.inf_bound = bigbnd;

3.e04mfc.24 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

/* Solve the problem. */
e04mfc(n, nclin, (double *)a, tda, bl, bu, cvec,

x, &objf, &options, NAGCOMM_NULL, &fail);

if (fail.code == NE_NOERROR)
{
/* Re-solve the problem with some additonal options. */

Vprintf("Re-solve problem with output of iteration results");
Vprintf(" suppressed and ftol = 1.0e-10.\n");

/* Read additional options from a file. */
fail.print = TRUE;
print = TRUE;
e04xyc("e04mfc", "stdin", &options, print, "stdout", &fail);

/* Reset starting point */
x[0] = 0.0;
x[1] = 0.0;
x[2] = 0.0;

/* Solve the problem again. */
e04mfc(n, nclin, (double *)a, tda, bl, bu, cvec,

x, &objf, &options, NAGCOMM_NULL, &fail);
}

/* Free memory allocated by e04mfc to pointers in options. */
e04xzc(&options, "all", &fail2);
if (fail.code != NE_NOERROR || fail2.code != NE_NOERROR) exit(EXIT_FAILURE);

} /* ex2 */

13.2. Program Data

Following options for e04mfc are read by e04xyc in example 2.

begin e04mfc

print_level = Nag_Soln /* Print solution only */
ftol = 1e-10 /* Set feasiblity tolerance */

end

13.3. Program Results

Example 2: some optional parameters are set.

Parameters to e04mfc

Linear constraints............ 5 Number of variables........... 3

prob.................... Nag_LP start................... Nag_Cold
ftol.................... 1.05e-08 reset_ftol.............. 5
fcheck.................. 50 crash_tol............... 1.00e-02
inf_bound............... 1.00e+25 inf_step................ 1.00e+25
max_iter................ 50 machine precision....... 1.11e-16
optim_tol............... 1.72e-13 min_infeas.............. FALSE
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag

Results from e04mfc:

Itn Jdel Jadd Step Ninf Sinf/Obj Bnd Lin Nart Nrz Norm Gz

0 0 0 0.0e+00 1 1.9369e+02 0 1 2 0 1.96e+01
1 2 A 6 L 5.0e-01 0 7.2049e-01 0 2 1 0 4.00e-02

[NP3491/6] 3.e04mfc.25

nag opt lp NAG C Library Manual

2 6 L 8 L 1.1e+01 0 -2.2109e+02 0 2 1 0 4.98e-01
3 1 A 7 L 5.4e+02 0 -3.5500e+02 0 3 0 0 0.00e+00

Final solution:

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 FR 7.50000e+01 -7.5000e+01 None 0.000e+00 1.500e+02
V 2 FR -2.50000e+02 -1.0000e+03 None 0.000e+00 7.500e+02
V 3 FR -1.00000e+01 -2.5000e+01 None 0.000e+00 1.500e+01

LCon State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 EQ -3.01303e-13 0.0000e+00 0.0000e+00 -1.300e-01 -3.013e-13
L 2 FR -4.20000e+02 -6.0000e+02 None 0.000e+00 1.800e+02
L 3 FR 1.50000e+03 0.0000e+00 None 0.000e+00 1.500e+03
L 4 LL -5.00000e+02 -5.0000e+02 None 2.500e-01 5.684e-14
L 5 LL -1.00000e+03 -1.0000e+03 None 2.300e-01 0.000e+00

Exit after 3 iterations.

Optimal LP solution found.

Final LP objective value = -3.5500000e+02

Re-solve problem with output of iteration results suppressed and ftol = 1.0e-10.

Optional parameter setting for e04mfc.

Option file: stdin

print_level set to Nag_Soln
ftol set to 1.00e-10

Parameters to e04mfc

Linear constraints............ 5 Number of variables........... 3

prob.................... Nag_LP start................... Nag_Cold
ftol.................... 1.00e-10 reset_ftol.............. 5
fcheck.................. 50 crash_tol............... 1.00e-02
inf_bound............... 1.00e+25 inf_step................ 1.00e+25
max_iter................ 50 machine precision....... 1.11e-16
optim_tol............... 1.72e-13 min_infeas.............. FALSE
print_level......... Nag_Soln
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag

Final solution:

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 FR 7.50000e+01 -7.5000e+01 None 0.000e+00 1.500e+02
V 2 FR -2.50000e+02 -1.0000e+03 None 0.000e+00 7.500e+02
V 3 FR -1.00000e+01 -2.5000e+01 None 0.000e+00 1.500e+01

LCon State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 EQ 4.78019e-13 0.0000e+00 0.0000e+00 -1.300e-01 4.780e-13
L 2 FR -4.20000e+02 -6.0000e+02 None 0.000e+00 1.800e+02
L 3 FR 1.50000e+03 0.0000e+00 None 0.000e+00 1.500e+03
L 4 LL -5.00000e+02 -5.0000e+02 None 2.500e-01 0.000e+00
L 5 LL -1.00000e+03 -1.0000e+03 None 2.300e-01 3.411e-13

Exit after 2 iterations.

3.e04mfc.26 [NP3491/6]

e04 – Minimizing or Maximizing a Function e04mfc

Optimal LP solution found.

Final LP objective value = -3.5500000e+02

[NP3491/6] 3.e04mfc.27

